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Abstract

A geomorphologic instantaneous unit hydrograph (IUH) consists of two components, one
relevant w the geomorphology and the other Lo the hydraulic aspect describing the movement
of a drop of water along a stream. Different formulations of the geomorphologic IUH are
reviewed, and a contrast is drawn between the geomorphologic and hydraulic components of
the geomorphologic IUH (GIUH) proposed by Rodriguez-Iturbe and Valdés (Water Resour.
Res., 15(6); 1409-1420, 1979) and those of a width function based IUH (WFIUH). In this paper
a comparison has been carried out of the original GIUH and a WFIUH which allows the effects
of different geomorphologic and hydraulic components to be identified. The comparison, which
is based on four sub-basins of the River Tyne, UK, clearly shows that the GIUH velocity
parameter lacks physical interpretation, in contrast to the hydraulic parameters of the
WFIUH, which are seen to be physically consistent. For practical application of the GIUH,
an equation is then proposed to estimate the velocity parameter through the basin concentra-
tion time, the Horton length ratio and the length of the stream of the highest order of the
channel network.

1. Introduction

Recently, many attempts have been made to relate the response of a catchment to
its morphologic or topologic aspects, using various hypotheses to model both the
advection and attenuation effects of a river network. In a significant development,
Rodriguez-Iturbe and Valdes (1979) introduced the concept of the gecomorphologic
instantaneous unit hydrograph (GIUH), later generalized by Gupta et al. (1980). The
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basic idea of the GIUH is that the distribution of arrival times at the basin outlet of a
unit instantaneous impulse injected throughout a channel network is affected both by
thé underlying natural order in the morphology of the catchment and the hydraulic
characteristics of the flow along the channels themselves. In the original approach of
Rodriguez-Iturbe and Valdés (1979), the underlying natural order in the morphology
1s represented by the Horton ratios which, 1n turn, are based on a classification of the
channel network of the catchment according to Strahler’s ordering scheme, whereas
the holding time of a drop of water within a stream of a given order is represented by
means of an exponential law which is, however, a conceptualization of the true flow
dynamics. As a consequence of this last hypothesis, the average holding time of a drop
within a stream of a given order is proportional to the average length of all the
streams of that order, and the proportionality factor is the velocity of the water,
which is considered uniform throughout the drainage basin (this assumption has
been known and often used in many hydrological models since the studies of Leopoid
and Maddock (1953) and Pilgrim (1976, 1977)).

Again examining the channel network response, Rinaldo et al. (1991) basically used
the same conceptual structure as used by Rodriguez-Iturbe and Valdés (1979), i.e.
they also referred to a Strahler ordered basin, but they replaced the assumption of
exponential holding times with the inverse Gaussian distribution, which, in turn, is
the impulse response of the convective diffusion equation representing the flow in a
stream of the network.

Other workers (Kirkby, 1976; Mesa and Miiilin, 1986: Naden, 1992) have proposed
different formulations of the geomorphologic IUH based on the width function (WF)
of the basin coupled with various routing procedures (these formulations are denoted
here as WFIUHs). In particular, the observed WF of a basin is coupled with the
convective diffusion equation in the case of the Mesa and Mifflin (1986), and Naden
(1992) WFIUH formulations. In these cases, the hydraulic component is character-
ized by two parameters which represent the celerity and the longitudinal diffusivity.
These parameters are dependent on the geomorphic characteristics of local slope and
discharge, implying that at least the order ot magnitude of these quantities 1s physi-
cally determined. Finally, Troutman and Karlinger (1984, 1985, 1986) and Karlinger
and Troutman (1985) proposed the topologic IUH, which is based, unlike a WFIUH,
on the specification of a finite number of topologic features rather than the complete
WF.

Because, in each geomorphologic IUH, it is always possible to identify two
components, as mentioned above, i.e. one relevant to the geomorphology and the
other relevant to the hydraulic aspect describing the movement of a drop of water
along a stream, comparison between the formulations can be made, hydraulic and/or
geomorphologic conditions being equal. On the basis of this idea, Snell and Sivapalan
(1994) compared the geomorphologic I[UH proposed by Rinaldo et al. (1991) with the
Mesa and Miffiin (1986) approach. The geomorphologic IUH proposed by Rinaldo et
al. (1991) was parametrized (1) by using the Horton order ratios to derive analytical
expressions for the geomorphologic parameters and (2) by extracting these directly
from a Strahler ordered network without using the Horton order ratios. The scope of
that paper was to analyse different approaches by which geomorphology can be
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introduced through the probabilities and lengths of the pathways available within the
network, hydraulic descriptions being equal.

As the original GIUH of Rodriguez-Iturbe and Valdés (1979) is in widespread use
today, a comparison is also needed between this formulation and the WFIUH
approach, to identify clearly the effects of both different geomorphologic and hydrau-
lics components. In this paper, Naden’s WFIUH approach (1992) is considered. Such
a comparison has been performed by considering four sub-basins of the River Tyne,
from which the geomorphologic information was extracted, and by defining common
hydraulic conditions for both formulations, i.e. the velocity for the GIUH and the
celerity and the diffusivity for the WFIUH. The analysis of these real-world cases
clearly shows the physically meaningless nature of the GIUH velocity parameter in
contrast to the hydraulic parameters of the WFIUH, which are seen to be physically
consistent. For practical application of the GIUH, an equation is then proposed to
estimate the velocity parameter through the basin concentration time, the Horton
length ratio and the length of the stream of the highest order of the channel network.

Finally, it is worth noting that there is an underlying assumption throughout this
paper of negligible travel time spent by a drop along the hilislopes. Therefore, the
geomorphologic [UHs considered here are strictly related to the channel network.
This assumption may be questionable within the framework of the overall repre-
sentation of the rainfall-runoff process at basin level; nevertheless, it is used here
simply to focus attention on the representation of channel network response alone.

2. The geomorphologic instantaneous unit hydrograph (GTUH)

The GIUH proposed by Rodriguez-Iturbe and Valdés (1979) is based on Shreve’s
theory (1966) of topologically random networks of a given magnitude (i.e. a given
number of sources) and on the state-transition approach (Howard, 1971) coupled
with a Markov process. In this formulation, the state i identifies the location of an
individual drop of water within a stream of order i or in the area drained by a stream
of order i; in a drainage network, a transition can only occur from a given state i to
some state of higher order j; the prohahility of that transition is defined as

number of streams of order i/ draining into order j
A= number of streams of order i

(1)
and the probability of state i is given by

total arca draining dircctly into the streams of order
0, = : )
total area of the basin

To derive a distribution for the travel time to the outlet of an individual particle, it is
necessary to hypothesize a holding time distribution for each state of the system.
Rodriguez-Iturbe and Valdés (1979) assumed that the probability density function
of the time spent by a generic drop in a state of order i is

Ji(t) = Ajexp(—At) 3)
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where ), is the reciprocal of the mean holding time in any stream of order i. This
position is equivalent to treating each order of stream as a linear reservoir,

The application of Eq. (3) to all orders of stream including the highest would imply
a hydrograph for the whole basin which does not start from zero. To avoid this,
Rodriguez-Iturbe and Valdés (1979) split the highest-order stream into two streams
(1.e. two linear reservoirs) in series, each with a travel time probability distribution

fa(t) = Mg exp(—Aat) 4)

where M\ = 2)q, i.e. each with a mean holding time of 0.5\g'. According to
Rodriguez-Iturbe and Valdes (1979), only the first, from upstream, of the two
‘reservoirs’ that represent the highest-order stream, receives (in the case, for example,
of a third order channel network) the drops from all second-order streams, a proportion
of the first-order streams, and those drops draining directly into the third-order stream.

Using Eqgs. (1)—(3) and Howard’s state-transition theory coupled with the Markov
process, the probability distribution of the total travel time to the outlet, i.e. the
GIUH, can be derived. However, this approach is complicated analytically and
may not be strictly necessary for deriving the GIUH. Gupta et al. (1980) restated
the basic concepts, and derived the cumulative density function of the time of travel to
the basin outlet as

P(Ty<t) =) _P(T,<1)P(s)

sCS

where P(-) stands for the probability of the set given in parentheses, T is the travel
time to the basin outlet, T, is the travel time for a particular path s, P(s) is the
probability of a drop taking paths s, and S is the set of all possible paths that a
drop can take upon falling in the basin.

Furthermore, Chutha and Dooge (1990) have shown that, for a given basin ordered
according to Shreve’s theory, the deterministic concept of routing through linear
reservoirs (Nash, 1957; Dooge, 1959, 1973) defines an IUH which is identical to the
GIUH. It is interesting to reproduce here such a derivation for a basin of third order
by using this latter approach, because it provides a good insight into the lumping
nature of the GIUH, and helps considerably in interpreting the results of the
numerical examples described below.

Let us consider a typical third-order basin, represented in Fig. 1(a), where it is
possible to recognize five types of sub-basin, as described in the figure caption. On
the other hand, Fig. 1(b) represents the schematization of the basin used as the basis
of the GIUH formulation (compare it with Fig. 3 of Rodriguez-Iturbe and Valdeés
(1979)). Fig. 1(b), in turn, can be used as a reference scheme to apply the convolution
from the streams of first order up to the outlet of the basin. It should be noted that all
the streams of a given order are lumped together, thus losing their real position and
distance from the outlet.

In accordance with the previously introduced assumption, and, in particular,
recalling that in the GIUH approach the drops of water falling in the area drained
by streams of order i are instantaneously transferred to the corresponding stream of
order i (no overland flow occurs), we consider an impulse of excess rainfall é(7)
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Fig. 1. A typical third-order basin and representation as combinations of unequal linear reservoirs. (a)
Typical third-ordcr basin with typcs of sub-basins. I, First-order strcam forming a second-order stream; 11,
first-order stream tributary to second-order stream; III, first-order stream tributary to third-order stream;
IV, overland flow to second-order stream; V, overland flow to third-order stream. (After Chutha and
Dooge (1990) ) (h) Representation of a third-order hasin as a comhination of linear starage elements in
parallel and in series. Every reservoir represents all the streams of a given order. §; represents the probability
that a raindrop falls within the area of the basin drained by a stream of order i, and p;; represents the
transition probability.

uniformly distributed over the whole channel network. Thus, the impulse
contribution to the second-order streams coming from the first-order streams is
(see Fig. 1(b)):

uia(t) = J[ﬁ'né(r)lpu)n expl=Ai(t — 7)]dr

and the impulse contribution to the first of the two reservoirs relating to the third-
order streams (Reservoir a) is

i) = J[ma(rnpux. expl—y(1 — T)]dr
0

Similarly, the impulse contribution to the third-order reservoirs a coming from the
reservoir relevant to the second-order streams, is

t

g, (1) = j (826(7)] Az exp[—Ag(t — 7)]dr + J“lz(f)'\z expl-a(t — 7))dr
0 0
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and the impulse contribution to the third-order reservoir b is

I !

Uy 3,(1) = J [636(7)| A3 exp[—A3 (1 — 7)]dT + Juza,(T)AE exp[—A3(f — 7)|d7
0 0

s J uy3, (T)A3 exp[—Aj(¢ — 7))dr
0

Finally, the output from the ‘reservoir’ 3,, i.e. the GIUH of the whole basin, is

GIUH = u(1) = J"3¢3a (T)A3exp[—A3(t — 7)|dr
0

= aexp[—A 1] + bexp[—Axt] + [ct — (a+ b)] exp[—31] (5)
where
. A
a=0,:(%)° [Pls + TYpn ;:;2(); u )\1)2]
. 01p12\
b= A (23)* |6, - !
il [’ (A2 = A1) (A5 = Ag)?
- Gp A Bp AlAz Gp AlAz
;Az{o_lnl_[OA_ 1212 ]_ 1212
P S A T L2 B RIDS Rl | O )05
A3 = 2)

To summarize, the geomorphologic information embedded in the GIUH is repre-
sented by: (1) 6;, the probability of state i; (2) p;;, the transition probability from a
given state i to some state of higher order j; (3) the way in which the reservoirs are
combined, where each is representative of all the streams of a given order. It should be
noted that this combination is equivalent to an arrangement of linear reservoirs in
parallel and in series (Bras, 1990; Chutha and Dooge, 1990).

Furthermore, the parameter A; represents a size or scale characteristic of the basin,
and, generally, the number of ); is equal to the order of the basin. To embed in this
parameter the ‘dynamic component’ of the response of the basin, Rodriguez-Iturbe
and Valdés (1979) defined an average velocity v for the catchment. Then

x = v/, (6)

where L, is the average length of the streams of order i. This hypothesis is based on the
assumption that, for a given rainfall-runoff event, the streamflow velocity is approxi-
mately the same at any moment in time throughout the basin (Leopold and Maddock,
1953; Pilgrim, 1977). Furthermore, this ‘velocity’ can be taken as the velocity at
the peak discharge time for a given storm event (Rodriguez-Iturbe et al., 1979).
Finally, it should be noted that this hypothesis means that the average travel time
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spent by a drop travelling along a stream of a given order is proportional to its
average length.

In the case of a pure ‘Ilortonian basin’ (i.c. a basin where the Horton laws hold
exactly), the probability of state i, §;, the transition probability p;; and the parameters
A; may be expressed in terms of the Horton ratios (see Appendix), to obtain the
following results for a third-order basin (Rodriguez-Iturbe and Valdés, 1979):

6, = RER; (7a)

Ry R4IARE-3R,

=R EQGR.-1) il
=12t RLE, [RB(I:;BR; Tt 2)J . (70)
Pra = Ré;’;f;;f (7d)
= T Rt (7e)
M=v/L;, MN=A/Ry, XM=X/R? , (70)

However, these equations, given the fact that they refer to the ensemble properties of
basins, are expected to produce results which differ from the corresponding quantities
estimated directly for any particular basin. Furthermore, small negative values of 6;
may result, particularly for higher orders. Bras (1990) simply suggested ‘adjusting’
those values to ‘eliminate the aberrant behaviour’.

Hereafter the GIUH calculated through Egs. (7a)-(7f) will be referred to as
‘Horton GIUH’, whereas, in the case where the quantities p;;, 6; and A, are directly
calculated through Egs. (1), (2) and (6), respectively, the GIUH will be referred to as
‘actual GIUH’.

3. The width function instantaneous unit hydrograph (WFIUII)

Generally, a WFIUH is the combination of the WF with any possible linear routing
scheme. In the present paper the routing scheme adopted is that proposed by Naden
(1992).

3.1. The network width function
The width function gives a description of the network of a basin simply by using the

distances from the outlet, measured along all its streams (Kirkby, 1976; Mesa and
Mifflin, 1986). Its derivation is then simple: it is sufficient to plot the number of
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streams at successive distances away from the basin outlet as measured along the
network itself. Fig. 2 shows the derivation of the WF. Under the assumption of
uniform drainage density and constant flow velocity, the WF is equivalent to the
time—area plot (Baldwin and Potter, 1987). Of course, for the calculation of the
WFIUH, the WF is normalized to one by division by the total number of unit
distance segments represented in the function. Furthermore, it can be easily coupled
with any routing scheme, possibly of hydraulic type such as the convective diffusion
equation, so that the values of the parameters can be defined in a sensible way, in
accordance with the hydraulic characteristics of the channel network.

Finally, even if the following aspect is not considered in this paper, it is worth
noting that many basin characteristics, such as the soil types (Naden, 1992), the slopes
of the different branches of the river network, the drainage density (i.e. the basin area
drained per unit length of the river network, etc.), can be easily embedded in the
transfer component through the WF, by simply subjecting the WF to different weight
sets, each of them relevant to a particular aspect of the basin. The effect of these
weights consists in a modification of the WF itself, which should reflect more
accurately the geomorphologic structure of the basin network.

3.2. The routing component

The use of the WF with the simple assumption of constant velocity easily converts
its distance axis into a time axis, thus producing a discretized unit hydrograph.
However, this approach disregards any possible attenuation effect owing to the
storage capacity of the many streams in the network. For this reason, Naden
(1992) suggested a fuller routing procedure based on the solution of the convective-
diffusion equation:
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Fig. 2. Derivation of the network width function.
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with boundary condmons Q(0,17) = 6(1), Q(x, 0) 0 and Q(o0,t) =0, where Q is
discharge (m® s™'), D is diffusion coefficient (m® s™'), ¢ is kinematic celerity (ms™"), 1
1s time (s) and x is distancc from upstrcam end (m).

When the coefficients D and ¢ are considered constant, the solution to Eq. (8) with
the prescribed boundary conditions, is

Y
h(x,t) = mexp [— X 2 DL:) ] 9)

where h(x, t) represents the impulse response of the convective diffusion equation, i.e.
the time evolution of the discharge at a distance x from the upstream end when an
instantaneous upstream impulse §(¢) is introduced.

From Eq. (9) it is easy to obtain the solution of Eq. (8) when a uniformly
distributed lateral impulse enters the channel over a reach length S =
[(x = 8) — (x =0)]. This is

h) -
| Al - s N ct)?
K(S,1) = Jz(,rma)l/zcm[ i |7

0

P (ct)? (S - ct)*
~ (m)' XP| " 4Dt -—exp- 4D1
c ct (S — ct)?
+§{erflﬁ(f)t)l 2] —erf _Z(Dt)m } (10)

where erf(-) represents the error function (Abramowitz and Stegun, 1965).

Finally, the solution at distance S of Eq. (8), when a uniformly distributed lateral
impulse enters the channel over a reach length Ax = [(x =x") — (x =0)] with
x* < §, may be obtained directly from Eq. (10):

Has(S,0) = 2= [H(S,1) — K(S - Ax, ) (11)

3.3. The WFIUH of the whole basin

Let Ax denote the length of the unit-distance segment used to build the WF; then
S = nAx is the distance from the outlet of the basin of the upstream border of each
segment. The WFIUH of the overall basin is then

WFIUH(f) = f:WF,, e d {H (nAx, 1) — K'[(n - 1)Ax, 1))} (12)
n=1

where WF,, is the WF value for the nth set of streams and m is the most remote set of
streams in the network.
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TARSET BURN L REDESDALE

L,

(TAR) - (RED)

EAST ALLEN
(EAL)
WEST ALLEN TYNE BASIN
(WAL)

CATCHMENT STRUCTURE
BASED ON GAUGES

FIRST ORDER
SECOND ORDER
e — THIRD ORDER

Fig. 3. Simplified grid-based drainage structure of the Tyne basin and the four sub-basins selected: TAR,
RED, EAL and WAL. All the data used in the calculations were derived from the simplified representation
of the Tyne basin.
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4. A numerical comparison of the two models

The models described above have been compared using the geomorphologic
information derived from four sub-basins of the River Tyne (UK) and then defining
a common hydraulic condition for both of them, i.e. by defining v for the GIUH and ¢
and D for the WFIUH in a consistent way.

The four basins used for the analysis of the two models are schematically
represented in Fig. 3. They are the Tarset Burn (TAR) sub-basin, the Redesdale
(RED) sub-basin, the East Allen (EAL) sub-basin, and the West Allen (WAL) sub-
basin. The corresponding Horton ratios have been calculated by using the simplified
grid-based drainage structure shown in Fig. 3 (grid size | km) and arc presented in the
first three columns of Table 1 together with the estimates of the probability of state i,
6,, and of the transition probabilities p;;, both obtained by using the formulae (7a)-
(7e). The corresponding actual values, derived using Eqgs. (1) and (2), are also given.
The data which are necessary to calculate the actual values of 6; and p;; were extracted
from the above-mentioned simplified map of the River Tyne. The comparison of the
estimated with the actual values gives an idea of the differences that may arise when
the two estimation methods are applied. Finally, the average lengths of the streams of
given order are presented in the last three columns of Table 1.

In Fig. 4, the WFs of the four sub-basins are given. In these plots the y-axis
represents the frequency, and the x-axis represents the distances from the outlet
expressed in kilometres. Obviously, the maximum value on the x-axis is the distance
of the farthest point of the river network from the basin outlet.

The common hydraulic conditions for the comparison have been established on the
basis of the following assumptions. A wide rectangular cross-section has been
assumed at the basin outlet; then, realistic values of width, slope, depth and rough-
necss have been defined. This allows for the calculation of the velocity of the water v,
celerity ¢ and diffusion D; these hydraulic conditions can be thought of as relevant to
the peak phase of a flood event. Finally, these values have been considered repre-
sentative for the whole basin. This is consistent with the basic assumption in the

Table 1

Geomorphologic parameters of the four third-order sub-basins of the River Tyne

Basin R, Ry R; Hortonian values Actual values Ly, L, Ly,
code (km) (km) (km)

60 6, 6 P2 Py B 6, 0 py  p;

TAR 4.7 35 21 060 028 0.12 082 0.18 0.59 0.24 0.17 092 0.08 28 35 12
RED 82 59 34 052 036 0.12 0.70 030 047 029 024 078 0.22 3.1 47 37
EAL 50 35 21 051 030 0.19 082 0.18 040 026 034 075 025 2.7 33 11
WAL 41 33 15 078 026 —-0.04 080 020 0.67 013 020 OR2 018 37 30 R

The Hortonian values of §; and p;; were calculated using Eqs. (7). The *actual values’ of 6; and p;, were
calculated by using Eqs. (1) and (2), respectively, and the data necessary for the application of these last two
equations were extracted directly from the simplified grid-based drainage structure of the Tyne basin. L,
and L, represent the average length of the streams of Order 1 and 2, respectively, and L,_, represents the
length of the stream of the highest order.
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Fig. 4. Width functions of the four sub-basins.

GIUH that, for a given rainfall-runoff event, the streamflow velocity is approxi-
mately the same at any moment throughout the whole basin and that the ‘reference
velocity’ can be taken as the velocity at the time of peak discharge for a given storm
event (Rodriguez-Iturbe et al., 1979). As a consequence, the celerity ¢ may be also
considered constant over all the network. The diffusion coefficient D may also be
considered as a reference average value for the hypothetical event: the assumption of

Table 2

Numerical values of the various quantities used to define the hydraulic conditions of the numerical example,
calculated with reference to a wide rectangular section

Velocity Discharge  Celerity Diffusivity Slope Depth Manning  Width
1 P 0 0 coefficient
= - 1 = = N — _—
v—nRz S, Q=Byv c=kv D ZBSIN2BS, Yo n B
L 212 Wo _ o
] ;I'I’z., So k=1.5 E = 3—30
(ms™) m’s™)  (ms) (m's7) mm™) m @'"s) (m)
1.45 130 2.18 1800 0.001 2.5 0.040 bl

R, Hydraulic radius.
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constant diffusion based on reference hydraulic conditions is widely applied in the
estimation of an IUH when this is derived from the solution of the convective
diffusion equation (Todini, 1996; Naden, 1992). Finally, it should be noted that the
realistic but certainly arbitrary geometry selected for the cross-section at the basin
outlet is only used to evaluate the reference hydraulic conditions. These, and not the
geometry, are assumed to be representative for the whole basin, in line with the
previously mentioned research results of Leopold and Maddock (1953) and Pilgrim
(1976, 1977).

On the basis of the above assumptions, and employing the Manning formula, the
numerical values of the various quantities were calculated with reference to a wide
rectangular section, and are shown in Table 2. A single hydraulic condition was
considered for all four sub-basins to highlight the effect of the geomorphology on
the IUH for a given hydraulic condition, for the cases of the WFIUH, the Horton
GIUH and the actual GIUH.

On the basis of these reference hydraulic conditions and using the geomorphologic
data previously described, three IUHs were calculated and are presented in Figs. 5
and 6. In Fig. 5, these are the WFIUH, the Horton GIUH (Egs. (5) and (7)) and the
GIUH based on the actual values of ;, p; (Egs. (1) and (2)) but holding times based
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on the Horton length ratio (Eq. (7f)); in Fig. 6, these are the WFIUH, the Horton
GIUH (Eqgs. (5) and (7)) and the actual GIUH (Egs. (1), (2), (5) and (6)).

In analysing these figures, two observations are appropriate. Referring to the
GIUH, it is evident that the results are not significantly different if either the
estimated or the actual values of §; and p;; (see Fig. 5) are used. In contrast, Fig. 6
shows a significant difference when the actual average lengths of the streams of
different order are used (see Eq. (6)) rather than those obtained through Eq. (7f). It
is evident that the GIUH in not sensitive to the method used to calculate 8; and p;;
and, therefore, to the morphologic information cmbedded in these quantities, given
the clear differences between these two sets of values (see Table 1). However, the
strong difference in the results obtained using the true average lengths instead of
the Horton length ratios suggests that the actual information should be extracted
from a map of a basin without filtering or smoothing it through the use of the Horton
ratios.

However, what is more evident from an analysis of Figs. 5 and 6 is the great
difference in the behaviour of the WFIUH and GIUH models. Obviously, the
undulations in thc WFIUH for the sub-basins RED and EAL are strictly related to
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the WF shape and cannot be expected in the GIUH because of the a priori assump-
tions which constrain its shape. However, there is a large difference in the time bases
of the two schemes, even if they rcfer to the same geomorphologic information
(although summarized in a different way) and the same hydraulic conditions.
Given this discrepancy, a natural reaction of a practically minded hydrologist
might be to estimate the ‘time of concentration’ of the network, 7™, as the ratio
of the longest distance from the outlet (see Fig. 4) to the velocity » and to compare it
with the base time #; of both ITUHs. Working in this way one obtains

TAR basin: L=20 km; 7" ~5.0 [h]
Red basin: L =49 km; T;" = 10.0 [h]
EAL basin: L=21 kml; 77" ~5.0 [h]
WAL basin: L=19 km; T:" ~4.0 [h]

(13)

where L is the longest flow distance in the basin network (see Fig. 4).

This pragmatic estimation of the concentration time, of course, disregards the delay
effect owing to the storage capacity of the network and the consequent increase in its
value. This damping cffcct is represented in the WFIUH through the coefficient D,
and in the GIUH through the ); values, which, as already shown, can be readily
interpreted as the time constants of linear reservoirs. It is therefore to be expected that
the observed time base 7, will be longer than the estimated 7., and, on the basis of
this, the values relevant to the WFIUH seem sensible (see Figs. 5 and 6), given also the
fact that the diffusivity value D = 1800 m?s~! is not very large. It is then surprising to
see that the 7, of the GIUH is almost more than twice the #, of the WFIUH for all the
four cases considered here. Such large time base values cannot be explained by saying
that the GIUH exhibits a larger gcomorphologic dispersion than the WFIUH (see
Rinaldo et al. (1991) for the definition of ‘geomorphologic dispersion’). In fact, Snell
and Sivapalan (1994) clearly showed that a geomorphologic IUH based on Strahler
ordering exhibits an underlying dispersion of an order of magnitude less than a
geomorphologic IUH based on an area and/or width function, hydraulic conditions
being equal.

To find an explanation for such different behaviour, it is opportune to recall the
reason for the presence of the velocity v in the GIUH model. This velocity has been
introduccd into thc modcl with the assumption that the average travel time is pro-
portional to the average length of the streams of given order. This fundamental
assumption allows the estimation of all the coefficients ); through a single ‘number’
represented by the velocity v. However, as a travel time is certainly a length divided by
a velocity, the question arises as to what is a ‘distribution of lengths’ in a Strahler
ordering system and what is a ‘velocity’ in that framework? It is evident from the
numerical application described here that v cannot be interpreted as the physical
velocity of a drop of water coming from the furthest point of a basin, simply because
the description of the underlying geomorphology of the natural drainage basin by
means the Strahler ordering introduces a lumping action which, among other things,
causes the loss of the information relevant to the maximum extent of the channel
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network itself, whereas, on the contrary, this information is maintained by the WF of
a basin. Consequently, it may be opportune to abandon the idea of considering v as a
physical velocity and to treat it as a pure calibration parameter or as a ‘reference
velocity’. In this context, a possible simple approach can be suggested based on a
priori evaluation of the ‘concentration time’ 7" of the channel network.

4.1. An estimation criterion for the parameter v of the GIUH

The procedure adopted to include the concentration time in the evaluation of the
parameter v of the GIUH is as follows. Henderson (1963) observed that the most
important characteristics of an I[UH are the peak ¢, and the time to peak #,, and that,
as long as these two factors are correct, the exact form of an IUH is not very
important. Thus, Rodriguez-Iturbe and Valdés (1979) resorted to an accurate
approximation of the GIUH, involving values of g, and f, obtained from the full
expression of the GIUH itself, for different velocities in the range 0.5-6 m s™! and for
different basin orders 2 = 3,4, 5, with L, varying from 125 to 2000 m. The calcula-
tions were carried out for 126 combinations of values of R, Rg, and R, in the ranges
2.5-5.0, 3.0-6.0 and 1.5-4.1, respectively. For fixed values of R4, Rg, R;, L, 2 and
v, the couples g,, #, were calculated and, finally, through a regression analysis,
Rodriguez-Iturbe and Valdés (1979) obtained two relationships between g,, f,, and
R4, Rg, Ry, Ly, S and v. Subsequently, Rosso (1984) rearranged these two equations
in consistent units, to obtain

g, = 0.364R} ¥ vLg! (14a)

t, = 1.584(Rp/R,)>¥R*®v 'Ly (14b)

where L, represents the length of the stream of the highest order. For a pure
Hortonian basin the following equation holds: Lq = L, R} .

Then, in line with Henderson’s observation (1963), these two equations could be
used 1o define completely an IUH for an imposed shape. Nevertheless, for a given
basin, even if the Horton ratios R, R, R; and the length of the highest-order stream
are directly derived from a map, the peak value g, and the time to peak ¢,, and then
the IUH, are not fully defined by Eqgs. (14a)-(14b) until the velocity v is selected.
Thus, a further equation could be introduced to relate the velocity v to some
characteristic of the IUH that can be a priori estimated. The base length or time
base ¢, of the instantaneous unit hydrograph may be used for this purpose; in fact, it
can be also interpreted as the time to concentration of the channel network (see, e.g.
Henderson, 1963; Bras, 1990), which, in turn, can be easily defined in many practical
applications to real-world basins, even if in a rough way. For example, this can be
done by using some empirical formulae which are usually fitted to the basins of a
particular country or a particular area of it. Furthermore, in the case that a basin is
under the management of a Public Agency or Centre charged with flood prediction—
prevention or the collection of hydrologic data, then it is expected that any agency
hydrologist can evaluate the range of the concentration time of that channel network
on the basis of his or her experience.
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To define, in an easy way, the third equation that relates the velocity v, or possibly
the ratio v™'Lq, to the concentration time of the channel network, we consider the
GIUH approximation dcvcloped by Rosso (1984). Starting from Eqs. (14a) and
(14b), Rosso (1984) derived the two parameters of the Nash model (1957):

f(t; a, k) = [kT(a)] "' (/k)* " exp(~1/k) (15)
as

o= 3.29(Rg/R )" R} (16a)

k =0.70[R,/(RgR.)|**v " Lg (16b)

The gamma function (Nash model) parametrized through equations (16a) and (16b)
(subsequently referred to as 'GIUH) and the GIUH are basically equivalent (Rosso,
1984; Chutha and Dooge, 1990), given the same Horton ratios and reference velocity.
It is then possible to work with Eqgs. (15), (16a) and (16b) instead of working on the
full formulation of the GIUH, which, in the case of higher-order basins, becomes
somewhat intractable.

Eq. (16b) contains the ratio v~ Lq. This ratio can be easily related to the concen-
tration time 7" by equating it to the time base #, of the ’TGIUH, now defined as
follows:

Iy
]GIUH(T)dT = 0.99
0

Then, it is possible to generate many triplets Rz, R; and R,, subjected to the
necessary constraints (see Appendix), and for any value of the ratio v~ Ly, ranging
between 0.1 and 15 h, to calculate the corresponding ¢, value. Finally, through a
simple regression analysis, one obtains

——Lvﬁ = 0.13877"(Rg/R,4)**’R}*" (determination coefficient = 0.992)  (17)

(where 7™ isin h, vis m h™! and Ly, is in m). Tt should he noted also that the ratio
Rp/R, can be disregarded; this result seems reasonable because a ‘travel time’ is

certainly linked to length information and not to area and/or bifurcation
information.

Then, Eq. (17) may be written approximately as
% = 0.138T™ R2* (18)

or
v = Lo(0.138T™ RY*#7)~! (19)
and, from Eq. (18)

w -1 —0.437
T:.' xXv LQRL
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Comparing this last equation with the “controlling parameter 7 in hydrologic
similarity for basins under the same kinematic conditions” (Rodriguez-Iturbe et al.,
Eq. (13), 1979) I = R}*/L;,, one may conclude that the hydrologic similarity
parameter is nothing more than an indirect evaluation of the basin channel network
time of concentration.

Going back to the numerical example related to the four sub-basins, the 77" values
can be estimated for the four sub-basins through Egs. (13), i.e. disregarding any

diffusion effect, and then, through Eq. (19), the following values of velocity are
obtained:

TAR basin: v=3.5 (ms™'); L=20km
RED basin: v=44 (ms™'); L=49 km
(20)
EAL basin: v=3.2 (ms™'); L=21 km
WAL basin: v=34 (ms™'); L=19 km

where L is largest distance from the outlet.
It should be noted that for all these velocities the ratio L/v is definitely different
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from the estimated concentration time T (see Eqgs. (13)). Therefore, none of these
velocities can be considered as the physical velocity of the drop of water along the
river network of the basins.

Using these new values for the reference velocity of the GIUH model, the GIUHs
have been re-calculated, and are presented in Fig. 7 together with the previously
obtained WFIUHs: the GIUHs are approximated here through the 'GIUH (Eqgs.
(15) and (16)) and the reference velocity is calculated by using Eq. (19) (see Table 1 for
the values used); they are now more similar to the corresponding WFIUHs. In Fig. 8,
similar plots are presented, but in this case the actual GIUHs (Egs. (1), (2) and (6)) are
shown. Again, by comparing Fig. 7 with Fig. 8, it is possible to highlight the different
results obtained by using the Horton ratios and the actual values of 6;, p;; and L;,
respectively.

Furthermore, whatever the method used to estimate p;; and L;, it is still possible to
observe some interesting differences between the WFIUHs and the GIUHs. When the
WF has a marked negative skewness (see, e.g. the WF of the TAR and the EAL
basins) the GIUH has a smaller time to peak than that of the WFIUH. This does not
happen for the WAL basin, whose WF is almost symmetric. This suggests that the
lumping approach inherent in the nature of the GIUH tends to concentrate all the
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morphologic information around the basin centroid. In other words, by describing
the characteristics of the network with a concise geomorphologic parametrization,
information about the network shape (easily obtained from maps) may be lost.

5. Conclusions

The GIUH is based on classifying the channel network of a basin according to
Strahler’s ordering scheme, and the geomorphologic information embedded in the
model is represented by the probability of state 7, 8;, and by the transition probability
from a given state i to some state of higher order j, p;;. The probability density
function of the time spent by a drop of water in a state of order i is assumed to be
of the exponential type; then, the parameter ); of that distribution represents the
reciprocal of the mean holding time in any stream of order i. No holding time is
considered for the overland flow. The assumption of an exponential distribution for
the holding time makes the GIUH mathematically equivalent to the response of a
conceptual model consisting of linear storage elements in parallel and in series.

The GIUH is not very sensitive to the estimation of the parameters §; and p;;, and
so the estimates based on the Horton ratios or the actual values extracted directly
from a map might be used. However, the GIUH is extremely sensitive to the estima-
tion of ; and, in turn, of \;. In this case, the use of the information extracted directly
from the map should be preferred.

The reference velocity v to be used in the GIUH cannot be physically interpreted as
the velocity of a drop of water coming from the farthest point in a basin. The work
presented here suggests that v be considered purely as a calibration parameter which
can be estimated in practice through a relationship with the concentration time, the
Horton length ratio and the length of the stream of the highest order of the channel
network.

The controlling parameter 7 (Rodriguez-Iturbe et al., 1979, Eq. (13)) in hydrologic
similarity, for basins under the same kinematic conditions, has been shown here to be
an indirect evaluation of the basin channel network time of concentration.

In general, by summarizing the characteristics of the network in terms of the
geomorphologic parameters on which the GIUH is based, information about the
shape of the network may be lost. The WF approach allows more information
about the network to be retained and it is straightforward to implement by simply
using a map of the basin; in fact, it does not need the estimate of any morphologic or
topologic parameter. Furthermore, it can be easily coupled with any routing scheme,
possibly of the hydraulic type such as the convective diffusion equation, so that the
values of the parameters can be defined in a sensible way, in accordance with the
hydraulic characteristics of the network.
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Appendix. Strahler ordering scheme and the Horton ratios

The Strahler ordering scheme (1952) is based on the following statements. The
furthest upstream points in the network are termed sources and the point furthest
downstream the outlet. A junction is termed the point where two streams (or links, or
river segments) combine to form a single stream. Streams that originate at a source
are defined as first-order streams. When two streams of the same order join, the
stream that is formed has an order one degree higher than the common order of
the two streams which combine. When two streams of different orders join, the
combined stream has the higher order of the two combining streams. The order of
the basin is the highest stream order (2.

Horton’s laws (1945) may be summarized as follows:

N,
law of stream numbers: —— = Rp
N

I
Iu-i— 1

law of stream lengths :

=R,

law of stream areas : _.A“’ = Ry,
w+l
where N, is the number of streams of order w, L, is the mean length of streams of
order w, and A, is the mean area of the basins of order w. R, R; and R, represent the
bifurcation ratio, the length ratio and the area ratio, respectively, whose values in
nature are normally between three and five for Ry, between 1.5 and 3.5 for R; and
between three and six for R,. Furthermore, Rz < R; < R,.
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