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INTRODUCTION

With the information available on the various manifestations of instability in a
continuous medium three main categories con be formulated. These are, first, the

oscillations of parallel flows, or nearly parallel ( quasi-parallel ) flows such as -
channel flows and boundary layers. Second, there is the class of flows with curved

streamlines, such as vortices between rotating cylinders or boundary layers along
curved walls. In the third category are those cases where the mean flow is truly

zero, such as Bénard cells and convective instabilities. Brock (1) observed that

"when water flows down a long sufficiently steep open channel, it is found that
the depth of flow is not as uniform as it would be if the same channel had a very

small slope. The flow is characterized by a series of hydraulic bores that extend
across the width of the channel and propagate downstream. Across these bores or
shocks the depth of flow varies abruptly . Between successive bores the depth of
flow varies gradually , Waves of this kind are termed roll waves and flows with
such waves are called slug flows by some workers".

Many analyses have been made concerning this phenomenon, but invariably,
they considered the channel bottom linear. It is the aim of this paper to analyze
hydrodynamic free surface instability resulting from the combined action of resis~
tance and curvature of the channel floor by using the generalized nonlinear sha-

llow=flow equations recently developed by Dressler (8).
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PREVIOUS WORK

This section focuses on previous works on the flow instability mechanism on -
open channels.

The phenomenon of free surface instability was first examinen by Jeffreys (10)
who considered flow in a wide rectangular channel with uniform velocity distribu
tion and Chézy friction formula, and concluded that the condition for instability
was that F> 2, where F is the Froude number. ‘

Keulegan and Patterson (11) determined mathematically a stability eriterion -
from Boussinesq's equation for wave celerity and the Manning formula. Their sta
bility criterion is

S, - S [unsfable] > 0

stable < (1)

in which S, and S are the bed and friction slope, respectively.
Dressler (5) and Thomas (16) performed mathematical analyses of several as -

pects of the surge motion. Using the shock energy inequality to construct actual
roll wave solutions, Dressler (5) observed that such solutions could never be cons
tructed if the variation of resistance effectwith depth was neglected.

Vedernikov (17, 18) generalized Jeffreys findings for a channel of arbitrary
cross-sectional shape and determined a stability criterion by using certain approxi

mations to the Saint Venant equations. His criterion is

V= (320 -r 3% ¢ (2)
in which V is the Vedernikov number, b is the coefficient in the resistance
low f = a (R)'D for a hydraulically smooth conduit, R is the hydraulic radius,
P is the wetted perimeter, A is the cross=sectional area, F is the Froude num
ber and a is a coefficient. The flow is unstable when V> 1.

Craya (2) showed that the flow becomes unstable when the Seddon celerity,
dQ/dA is greater than the Lagrangian celerity, v+ [gy] /2 , ie€4,

dQ/dA > v+ [gy] V2 3)

where Q is the discharge, A the cross-sectional area, v is the average velo

city, g is the gravitational acceleration and y is the flow depth.
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Dressler and Pohle (6) adapted the method proposed by Jeffreys (10) to a gene

ral resistance function and derived
u> 8 [g Y cose] 1/2 (4)
m

which is identical with the Vedernikov (17, 18) and Craya (2) results obtained by

other methods under somewhat different assumptions. In Eq. (4), U and Y are
the velocity and water depth for linear uniform flow respectively; g is the gravi

tational acceleration, 8 the angle of inclination of the channel below the hori-
zontal, m and q are exponents in the general resistance function Au q/ym in

which u andy are velocity and depth of flow respectively, and Nis a measure

the roughness.

Dracos and Glenne (4) investigated whether a perturbed water surface along a
characteristic tends to steepen or flatten, If it tends to steepen, the perturbation
will grow into a breaking wave.

Gradowczyk (9) extended the linear stability analysis of open channel flows to
include the erodibility of a noncohesive bed. The critical Froude number F_ abo

ve which the free-surface of the fluid becomes unstable in a rigid and flat channel
is

e 5)

¢ (1)
where | isa constant and F is the critical Froude number.

Ponce and Simons (14) applied the theory of linear stability (13) to the Saint

Venant equations (3) which governs the flow motion in open channels. They vali
dated the theoretical and observed fact that roll waves are formed when F> 2

( for wide channels using Chézy friction ).

All the above presented criteria are strictly valid for channels with a straight
bottom. To overcome the inherent limitations imposed by the Saint Venant equa
tions (19), Dressler (8) derived expressions that incluide terms containing not only
the channel slope 8, but also containing explicitly the bottom curvature k and
its rate of change k'.

It is the objective of this paper to éarry aut a stability analysis using the
Dressler generalized nonlinear shallow-flow equations. The methodology used is

the one outlined by Dressler and Pohle (6).
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THEORETICAL DEVELOPMENT

In this section, the Dressler generalized nonlinear shallow-flow equations are

presented. Linearized perturbation theory is used to obtain the differential equa
tions governing the perturbations, and stability criterion is derived.

Governing Equations.- Following Dressler (11), the nonlinear shallow-flow -

equations with curvature expressed in a curvilinear coordinate system for nonvis-

cous fluids (Fig. 1) are the continuity equation

ON, 1 cIN _ In(1-kN) IC
ot T 5 T Js T-kN)k~ O's

(1-kN)?
N I S X (B SN R P ©)
kz [(]_kN)z (1-kN) J

and the equation of motion

P
(>C+ ! C9C+ [gcose+——-—-——k 3C2] N

Xt hany? Of (1-kN) Js
- [kg sin® - k 3 Cz} N+ g sin@ =0 7)
(1-kN)

for the unknowns C (s,t) and N (s, t).

In Egs. (6) and (7), C represents the tangential velocity along the channel
bottom, N the depth of flow, s the length coordinate measured along the bo-
ttom curve, t is time, © is the channel floor inclination, g is the gravity
acceleration, k is the bottom curvature and k' is the rate-of-change of curva-

ture. The experimentally confirmed validity of the Chézy equation for highly

unsteady flows (7) makes the modified Chézy formula

N

PN |, . kN 8)
2

applicable to flows over a curved surface. In the above expression, >\ isa

measure of the roughness and P is the density of water.
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Adding the resistance term (8) to Eq. (7), the generalized shallow-flow equa

tions become :

Equation of continuity :
ON , 1IN _4a(1-kN) JC

ot 2 " 9s (O-kNYk Js
(1=kN) :

e[k fn (1-kN) | ¢ -
"3 [“——7 Nt W\ﬂ ¢=0 S
k (1-kN)

Equation of motion :

oC 1 2C k 2 ON
=7 + 5 C ¥ + g cos® + — C 35
(1-kN) (1-kN)

2
. k2 , A S
-[kg sin@ - ———'3C ] N + gSlne = - —P' -N-[T__m} (]0)
(1-kN)
These equations show that the velocity is no longer constant over any cross-ac
tion orthogonal to a curved bottom. The possible uniform flows are given by

C = C, N = N when

- " X EZ
- | kg sin® - —_-_-36 N +g sinf == — — ] amn)
(1-kR) ] D B

The sign convention followed is a positive sign for concave curvature (k > 0)

It is required that this bottom curve be continuous, with continuous slope, and
with continuous curvature.

Dressler (8) suggests restricting applications of the equations within the range

-0.85 < kN £ +0.50 (12)
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Linearization.- The instantaneous tangential bottom velocity and flow depth

are now respresented by a steady (mean or base flow ) part and a fluctuating com

ponent of small amplitude as shown in Fig. 2, and following :

]

C=C+c¢C

N (13)
N=N+N

in which C and N are the steady parts, and C' and N' are the fluctuating
parts of the velocity and flow depth, respectively. By pgstulate, C' & T and
N' <K N

Substitution of these expressions into Eqs. (9 ) and (10) results in the diffe-
rential equations governing the perturbations. The standard linearization assump
tion of neglecting second order products of the perturbations is made. The justifi
cation for this is that provided the amplitudes of the disturbances are sufficiently
small, cross terms such as C'N' serve only to generate higher harmonics with
greatly reduced amplitudes. However, although the amplitudes of the fluctua-
tions are assumed small, they can be subjected to large amplification rates . The

purpose of the linearized perturbation theory is to determine the range of frequen

cies for which arbitrary disturbances are either attenuated, remain at constant am
plitudes, or are amplified.

The following simplifications are now made to Eqs. (9), (10) and (11).
Terms such as 1/ (1-kN)9 are replaced by 1 + qkN, the first term in a series
expansion. The justification for this lies in the typical values that kN achieves
in practical applications ( =0.15 kN K + 0.18) such as in channels and spill-
ways. Consequently, terms of order k2 and greater are neglected in this approxi
mation. The £n ( ) terms are replaced by the first term in a Taylor series repre
sentation. Finally, the effect of variation of k with s is assumed small and
is therefore neglected in the analysis.

As a result of the linearization operations, the use of these simplifications and

some order of magnitude analyses, the following differential equations governing

the perturbations are obtained :
ON' ON!
oF os

LA, »

+ C (142kN) oF
1-kN
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and

%%'+E(l+2kl.\-l) %NZ‘+ (g cos® + k 62) 55
__gsin8(kN) N -2X S [ 1 e
_ ¢ > = [__..__...1 o ]c 05)

2
The equation describing the possible uniform flows is obtained from Eq. (11). It

becomes >

_ _ kN1 1/2
— | gsind N -kN)(1 - ) (16)

<= x

Mathematical Form of the Disturbances.- An oscillatory disturbance moving in

the s~direction is assumed, and the wave motion m:y be assumed to consist of Fou

rier componants. A convenient form is:

* rt cos

c=c me" () [Cs +5 1) (7)

sin
*
In the above equation, C (n) is the amplitude of the superimposed motion, §

is a wave number, P is the wave speed and n s the distance measured ortho

gonally outward fromihe bottom curve. If ¥ = r + ip, then
C' = C" (n) exp (Yt + ipp) (18)
in which Y is a complex propagation factor.
Physically, the use of a time-varying perturbation model in the present case
implies that at a given location in the flow the disturbances are varying in size
with time. Experiments conducted by Liepmann (12) on laminar boundary layers

flowing along curved boundaries indicated that instabilities are stationary in time,
varying only with streamwise distance. Therefore, a spatially varying disturbance

is postulated :

*

C=C ) exp (S Vs)ds +ipp ) (19
In this formulation, the exponent fY(s)ds is introduced in order to account
for any changes in Y that occur with s. This would be the case, for example,

if the curvature k varied in the s direction.

In generalizing the earlier form, an inconsistency is introduced.
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If, as in Dressler and Pohle's (6) analysis, the base is a steady unifarm flow, -
flowing parallel to the wall, then c’ s truly a function of nonly. However,
when, for instance, the curvature (and hence ¥') changes, c” will change. It
follows then that this disturbance is not strictly a function of n only. Neverthe
less, the assumption of independence of s is believed not to introduce any appre
ciable error, for the function C* (n) varies only slightly with Y . Furthermore,
Smith (15) ins his work on the growth of Taylor-Goertler vortices along highly
concave walls found that terms such as Ok/ds are distinctly minor fattors compa
red with the major terms in the Navier-Stokes equation. This observation is fur~
ther evidence that neglecting variation with s of C* has a negligible effect on
the solution.

The solution obtained throughout this paper, however, assumes a small rate-of-
change of curvature, and hence a constant Y . Therefore, Eq. (18) is used.

Stability Analysis.= It is well known that open=-channel flows may become uns

table whem the Froude number number is sufficiently high. The subject of whether
introduced periodic disturbances may propagate in free-surface flows over curved
surfaces, is investigated here using a linear stability analysis similar to that applied
by Dressler and Pohle (6). Since Egs. (14) and (15) form a linear system, they
can be reduced to a single equation by eliminating N'. A second order linear
equation for C' is obtained .
Py, (142kR) A [ﬁ ki) i‘i9—-9——-—1“—92)} Q?C'
tIs (1-kN) 3.2

S

t

_2
_)_\ — E_ 1 o Dc'
+ 2 P (1+2kN) - [T_-;:y\—j—”] gsin® 5
< 1 oc -

When Eq. (18) is substituted in Eq. (21),
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Solution of Eq. (21) implies the following relationship between ¥ and P

- _2 2
Y--35¢ [——3—_—] - TN (i p) * —’-\;-53—2{ ‘
Niy. KN P™ R b kN
2
- 2 1/2
- NlgcoBHC ) o2 | ipgsing (22)

(1 - kN)

Stability requires both roots to be in the left half of the complex Y -p plane.
Equating the first square root in Eq. (22) to

2 S| 1 s caskNGip),

PN, K

2
separating real and imaginary parts, eliminating C (1 +2kl:l)P, and using Eq.(16),

the condition for the searched root to be on the p-axis is found to be
2

_ N 2 2
Fz(coszﬂ -1 - kN)4 (] - ;ﬁ) =16 A cos 8 (23)

Therefore, the instability criterion is

- kN
Pz(cos2 C -])(]-kN)4 (- -TN-) 2>]6 )\zcosze (24)

Using Eq. (16), the instability criterion can be written in general as
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1 - kN
when k = 0, expression (25) reduces to the form given by Dressler and Pohle (6),
Craya (2) and Vedernikov (17, 18) for a linear channel. If k< 0 (convex cha

nnel), calling the curvature  k, condition (24) becomes

g N cosf } 1/2 s
14kl N
if k>0 (concave channel), condition (25) holds.

c>2 [ (26)

CONCLUSIONS AND RECOMMENDATIONS

The object of the analysis presented here is to study the hydrodynamic instabi-
lity of open-channel flow under the simultaneous influence of bottom curvature and

Chézy-type resistance. The developed criteria for instability of flow are
for convex channels (k < 0):

En2 [&i—@} /2 (26)
1+k] N

and for concave channels (k < 0):

’é>2[_g__l_\-1 cose] 1/2
1- kN

(25)

These criteria expand yhe finding of Dressler and Pohle (6), Craya (2) and
Vedernikov (17,18) by explicitly including the curvature term. A suggested area

of further research is to check these eriteria by experimental investigations as well

as to consider greater values of kN, and cases in whick k' cannot be neglected.
g ' g
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APPENDIX 11 - NOTATION
The following symbols are used in this paper :

cross-sectional areq;

coefficient;

coefficient;

tangential velocity along the channel bottom;

wave amplitude;

critical Froude number; .
Froude number;

function;

gravitational acceleration;

1/2
(-1)/;

constant;

exponent;

depth of flow;

distance measured orthogonally outwards from the bottom curve;
wetted perimeter;

parameter;

discharge;

exponent;

hydraulic radius;

parameter;

friction slope;

bed slope;

length coordinate measured along curved bottom;
time;

velocity for linear uniform flow;

velocity;

Vedermikov number;

average velocity;
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Y = depth for linear uniform flow;

y = flow depth;

P = wave number;

Y = propagation factor;

8 = angle of inclination of the channel;
k = curvature;

k' = rate-of-change of curvature;

A=

measure of roughness; and

P = water density.

Superscripts

perturbed variable; and

steady part of the variable.
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ABSTRACT : An investigation on hydrodynamic instability resulting from the combi
nes action of Chézy type of resistance and curvature of the channel floor by using
the generalized nonlinear shallow-flow equations developed by Dressler (2) ispre

sented. Linear stability analysis is applied to derive the griteria.

The developed criteria for instability of flow expand the findings of Dressler and

Pohle (3), Craya (1) and Vedernikov (4) by including the curvature term.
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